电路就是一个为了完成某种功能而由一系列电气器件和导线按一定方式连接起来的电流通路。这些功能比如:强电电路,实现电能的传输、分配与转换;弱电线路,实现电信号的传输、分配与转换等。
电路一般由电源(或者信号源)、负载和中间环节三部分组成。其中电源(信号源)是将其他形式的能量或信号转换为电能或电信号的装置。负载是使用电能或者将电能转换为其他形式能量的装置。中间环节联接电源与负载之间,是传送、控制电能或电信号的部分。
含义:如果1秒内通过导体横截面的电量是1库仑(C),则该导体中的电流为1安(A)。
电流的方向只有两种可能,但是在对实际电路进行分析时,我们事先往往并不知道电流的实际方向。
电流的参考方向:若任选某一方向作为电流的方向,在电路图中用箭头表示,并以这个方向来列电路方程、分析计算,那么这种人为规定的电流方向就称为电流的参考方向。
在规定参考方向后,电流就可以用一个代数量表示,即它不仅有数值,而且包含正、负 号。因此,只有参考方向选定之后,电流之值才有正负之分。再说一遍:电流为负,只是说明实际方向与参考方向相反,并不是真的比零还小。
按参考方向分析电路得出的电流为正值(i0),表明电流的参考方向与实际方向相同。 反之,若得出的电流为负值(i0),则表明电流的参考方向与实际方向相反,如图(a)、(b)所示。
一、电压:电路中a、b两点间的电压为单位正电荷在电场力的作用下由a点转移到b点时电场力所做的功,即
在分析电路时,和电流一样,电压也要任意选定其参考方向。按照所选定的参考方向分析电路,得出的电压为正值(u0),表明电压的实际方向与参考方向一致;反之,若得出的电压为负值(u0),则表明电压的实际方向与参考方向相反。
当元件的电流与电压参考方向一致时,称为关联参考方向,反之,则为非关联参考方向。
一是用箭头表 示;二是用“+”“-”符号表示;三是书写时用带双下标的字母u_{ab}表示,如图所示。
对一 个元件或一段电路上的电压参考方向和电流参考方向可以独立地任意选定。若电压和电流的参考方向相同,则把电压和电流的这种参考方向称为关联参考方向,如图所示。
若任取一点o作为参考点,则由某点a到参考点o的电压 称为a点的电位,用u_{a}表示亿博电竞。
电动势在数值上等于非电场力把单位正电荷由负极经电源内部移到正极所做的功。显 然,电动势的单位也是伏[特](V)。用符号e表示,即
通常规定电动势的实际方向是由电源的负极指向电源的正极。同电流和电压一样,在 电路中所标出的电动势的方向也是它的参考方向。
表示形式:常用正(+)极性表示电源的高电位,用负(-)极性表示其低电位。
当电压和电动势的方向不随时间而变化时,称为直流电压和直流电动势;当电压和电动势的量值与方向都不随时间而变化时,称为稳恒直流电压和稳恒直流电动势,分别用符号U和E来表示。
含义:1焦耳等于功率为1瓦的用电设备,在1秒内消耗的电能。工业现场,还采用千瓦小时(kWh)作为电能的单位。
实际的电气元件外形千差万别,功能多种多样。组成电路的实际电气器件往往比较复杂(外形多样),功能多种多样,电磁现象、电磁性能多方面交织。为研究方便,我们要将实际的器件加以理想化,即只考虑起主要作用的某些电磁现象,而忽略其它现象。也就是我们使用理想电路元件和电路模型的概念。
电路模型是实际电路抽象而成,使用它近似地反映实际电路的电气特性。电路模型由一系列理想电路元件用理想导线连结而成。用不同特性的电路元件按照不同的方式连结就构成不同特性的电路模型,在称呼上我们仍然称为电路。
电路元件的理想化(模型化):在一定条件下,突出元件主要的电磁性质,忽略其次要因素,把它近似地看作理想电路元件,这样便于对实际电路进行分析和用数学描述。
集总参数元件:每一种元件只表示一种基本电磁现象,并用一个准确的数学表达式来描述其基本电磁性能。用一个准确的数学表达式来描述其主要电磁性能的元器件就称为理想电路元件。
1)从具有两个端子的理想元件的某一端流出的电流恒等于从另一端流入的电流;
二、电感元件:简称电感,反映电路周围存在着磁场而可以储存磁场能量的二端元件。
三、电容元件:简称电容,反映电路及其附近存在着电场而可以储存电场能量的元件。
电压电流关系:伏安特性曲线。在 电压-电流(u-i )坐标平面上,表示元件电压电流关系(VCR)的曲线称为伏安特性曲线。
一、欧姆定律:在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。
二电路、电导:定义电阻的倒数称为电导。G=\frac{1}{R}单位是西门子(S)。
电阻元件把吸收的电能转换成热能,即从t_{0}到t时间内,电阻元件消耗的电能为
理想电源分为独立源和受控源。独立源分为独立电压源和独立电流源,简称电压源和电流源。
受控源:受电路中另一部分的电压或电流控制的电源,非独立的电源。 受控源是一个二端口元件,用菱形符号表示。 受控源有以下四种类型:
② 独立源与受控源的不同点:独立源的输出量是独立的;受控源的输出量是不独立的。
将图所示电路中的开关S合上,电源与负载接成闭合电路,电路导通、是通路,即处于有载工作状态。
开路:若电路(或元件)的电阻为无限大,则当电压是有限值时,其电流总是零,这时称它为开路。
短路:若电路(或元件)的电阻为零,则当电流是有限值时,其电压总是零,这时称它为短路。
一个或多个二端元件串联组成的分支称为一条支路。三条或三条以上支路的连接点称为节点。如图1电路,有6支路,4个节点。
平面电路图中,在回路内部不另含有支路的回路称为网孔。如图1电路,有6个回路,3个网孔。
为了用图论的办法去分析复杂电路,我们往往把有多个网孔的电路称作网络,有时网络和电路两个概念混用。
⑤当元件的电流与电压参考方向一致时,称为关联参考方向,反之,则为非关联参考方向。
对外电路No来说,如果两个二端网络(电路)N1和N2具有相同的伏安特性,我们就说N1和N2这两个网络对No来说是等效的。需要说明的是:
3)等效具有传递性的。如果两个二端网络N1和N2等效,而二端网络N2又与N3等效,那么必有二端网络N1和N3等效。
将一个网络变换为与其等效的另一个网络的过程称为等效变换。应用等效变换,可将一个结构较复杂的电路变换成一个结构较简单的电路,使电路的分析得以简化。
使用等效变换的方法分析电路,一定要注意:待分析的电路部分(局部电路No)属于外电路,使用等效变换不能求取内电路的参数。
工业用电设备或者家用电器中经常提到额定值的概念。在电路中的电气设备,它们的工作电压、电流、功率都有一个规定的安全、合理数值,这个 规定的安全合理 值就是电气设备的额 定值。
额定值一般包括额定电压U_{N}、额定电流I_{N}和额定功率P_{N}。电气设备或元件的额定值可以从设备铭牌和产品手册中查到,使用时务必遵守其规定。
在额定电压下,若电气设备通过的电流高于额定值,则称为过载(过流),过载(过流)时间过长会使设备很快损坏;若电流低于额定值,则称为轻载,不能充分利用设备的能力,经济效益差。若电压低于额定电压,称为欠压运行,一般设备不能合理运行。
在集总参数电路中,任何时刻流入或流出任一节点的所有支路电流的代数和等于零,即
\Sigma i_{入}= \Sigma i_{出} \\基尔霍夫电流定律(KCL),反映了电路中任一结点处各支路电流间相互制约的关系。
KCL的推广 电流定律可以推广应用于包围部分电路的任一假设的闭合面。即任何时刻,对于一个封闭面流入或流出的电流代数和等于零。
内容: 在集总参数电路中,任何时刻沿任一回路所有支路电压的代数和等于零,即
KVL的推广:可以推广运用于电路中的假想回路。比如开口电压可按闭合回路来处理。
最后说一句:码字不易,若此文对你有启发,收藏前请点个赞、点点喜欢,是对知乎主莫大的支持!!